B.Tech (Sem.2nd)

ENGINEERING. MATHEMATICS-II
 Subject Code :BTAM-102
 Paper ID : [A1111]

Time: 3 Hrs.
Max. Marks :60
Note:- (1) Section-A is compulsory. Attempt any five question from section B and Section-C Selecting at east two from each section. Each question of section B and C Carry eight marks.

SECTION-A

Q1. (a) Test whether the set $\{(1,1,1),,(1,1,0),(1,0,1)\}$ of vectors is Linearly independent or dependent.
(b) Prove that the eigen values of unitary matrix are of unit modulus.
(c) Define the logarithmic function of a complex variable and hence find the general value of $\log (-1)$.
(d) Express $\operatorname{Sin}^{5} \theta \cos ^{2} \theta$ in a series of sines of multiples of θ.
(e) Discuss the convergence/divergence of the series $\sum_{n=2}^{\infty} \frac{\cos n \pi}{n \sqrt{n}}$
(f) Find the general solution of the equation $\frac{d y}{d x}=\sin \left(y-x \frac{d y}{d x}\right)$.
(g) Obtain the particular solution of the equation $\frac{d^{2} y}{d t^{2}}+4 \mathrm{y}=\cos 2 \mathrm{t}$.
(h) Define Hermetian and skew-hermetian matrix with one example of each.
(i) For what value of " k " the differential equation $x y^{3} d x+k x^{2} y^{2} d y=0$ is an exact equation.
(j) State Integral test and use it to test the convergence/divergence of the series
$\sum_{n=2}^{\infty} \frac{1}{n \log n}$

SECTION-B

Q2. (a) Solve the following simultaneous differential equation
$\frac{d x}{d t}+3 \mathrm{y}+4 \mathrm{x}=\mathrm{t}, \frac{d y}{d t}+2 \mathrm{x}+5 \mathrm{y}=\mathrm{e}^{\mathrm{t}}$
(b) Find the particular solution of the differential equation $y^{\prime \prime}-4 y^{\prime}+3 y=e^{x} \cos 2 x$ by using operator method.

Q3. (a) Use method of variation of parameters to find the general solution of the differential equation $y^{\prime \prime}+3 y^{\prime}+2 y=2 e^{x}$.
(b) Find the complete solution of the differential equation
$(3 x+2)^{2} y^{\prime \prime}+3(3 x+2) y^{\prime}-36 y=3 x^{2}+4 x+1$

Q4. (a) An e.m.f $\mathrm{E}_{0} \sin p t$ is applied at $\mathrm{t}=0$ to a circuit contianing a capacitance C and inductance L . The current i satisfies the equation $\mathrm{L} \frac{d i}{d t}+\frac{1}{C} \int_{\mathrm{i}} d t=E_{0} \sin p t$. If $p^{2}=1 / L C$ and initially the current i and the ${ }^{d t}$ charge q are zero. Find the current i any time t in the circuit
(b) Solve the equation $y=2 p x-p^{2}$, Where $P=\frac{d y}{d x}$.

Q5. (a) Solve the differential equation $\mathrm{xy}\left(1+\mathrm{xy} \mathrm{y}^{2}\right) \frac{d y}{d x}=1$
(b) Find the solution of the differential equation $\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0$

SECTION-C

Q6. (a) Use the rank method to test the consistency of the system of equations

$$
x+2 y-2 z=1 ; \quad 2 x-3 y+z=0 ; \quad 5 x+y-5 z=1 ; 3 x+14 y-12 z=5
$$

if consistent, then solve it completely.
(b) State Cayley-Hamilton theorem and use it to find the inverse of the matrix
$\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$.

Q7. (a) Test for what values of x the series $\frac{1}{2}+\frac{2}{3} x+\left(\frac{3}{4}\right)^{2} x^{2}+\left(\frac{4}{5}\right)^{3} x^{3}+\ldots \ldots \ldots \ldots \ldots . . . \infty,(\mathrm{x}>0)$ Converges /diverges.
(b) Test for the convergence/diverge of the following series
(i) $\sum_{n=1}^{\infty} \operatorname{Sin} \frac{1}{\mathrm{n}}$
(ii) $\sum_{n=1}^{\infty} \frac{1.3 .5 \ldots \ldots .(2 \mathrm{n}-1)}{4^{n} 2^{n}(\mathrm{n}!)}$

Q8. (a) Use Demoivre's theorem to prove that

$$
(1+\sin \theta+i \cos \theta)^{\mathrm{n}}+(1+\sin \theta-\mathrm{i} \cos \theta)^{\mathrm{n}}=2^{\mathrm{n}+1} \cos ^{\mathrm{n}}\left(\frac{\pi}{4}-\frac{\theta}{2}\right) \cos \left(\frac{\mathrm{n} \pi}{4}-\frac{\mathrm{n} \theta}{2}\right)
$$

(b) Seperate $\operatorname{Sin}^{-1}\left(\mathrm{e}^{-i \theta}\right)$ into real and imaginary parts, Where θ is a positive acute angle.

Q9. (a) Find the sum of the series
$1-\frac{1}{2} \cos \theta+\frac{1.3}{2.4} \cos 2 \theta-\frac{1.3 .5}{2.4 .6} \cos 3 \theta+$ \qquad $-\pi<\theta<\pi$.
(b) Reduce the matrix $\left[\begin{array}{rrr}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]$ to normal form and hence find the rank of the
matrix.

